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I. Introduction



I. Introduction

● Data mining requires a methodical way of quantifying similarity and dissimilarity.

● Distance and similarity serve the same purpose
○ High similarity implies small distance
○ Low similarity implies large distance

● Distance functions are highly sensitive to
○ The distribution of the data
○ The dimensionality of the data
○ The type of data

● A data mining algorithm is only as good as its distance function. 

● Never assume that Euclidean distance is the appropriate distance function to use!



II. Multidimensional Data 
A. Quantitative Data



Lp-norm

● Most common distance function for quantitative data.

● Special cases:
○ p = 2 → Euclidean distance
○ p = 1 → Manhattan distance
○ p = ∞ → absolute value of the dimension, i, for which X and Y are the most distant from each other.

● Euclidean and Manhattan distance are easily interpreted in spatial applications:
○ Euclidean: straight line between two points.
○ Manhattan: “City block” driving distance between two points on a grid.

● Assumption: all features are equally important



Impact of 
Domain-Specific 
Relevance

● Domain knowledge → are some features more 
important than others?

● If yes, assign a weight, ai, to each dimension.

● Generalized Minkowski distance

weight



Impact of High 
Dimensionality

● As the # of dimensions increases, the 
usefulness of distance-based data mining 
applications decreases

● “Curse of Dimensionality”

● Example: distance-based clustering may group 
unrelated data points if the dimensionality is 
sufficiently large.

● Contrast → ratio of variation in the distances to 
the absolute values, i.e. how useful distance is 
at discriminating between objects that are 
different.



Impact of Locally 
Irrelevant Features

● Some features may be generally relevant to a 
distance function

● However, the relevance of some features may 
change depending on the specific pair of 
objects being compared

● Global dimensionality reduction will not work in 
this case, since feature relevance is determined 
locally (i.e., between specific pairs of objects)



Impact of Different 
Lp-Norms

● Larger p will emphasize irrelevant features

● Example: X and Y have 1,000 dimensions and 
are equal on 999 dimensions, but very different 
on one.
○ Should probably be considered very similar
○ If p = ∞, considered completely different because 

of the one dimension where they differ.

● General rule: the larger the dimensionality, the 
smaller value of p to use

● Can also use fractional metrics where p is 
between 0 and 1

● Precise choice of p requires benchmarking in 
application-specific way



Match-Based Similarity Computation

● How to select locally relevant features for distance computations?

● Need to de-emphasize impact of noisy variation along individual attributes, while counting the cumulative 
match across dimensions

● Rationale: a pair of objects are unlikely to have similar values across many attributes just by chance, 
unless those attributes are locally relevant

● One way of doing this is proximity thresholding, 
○ Divide each dimension into kd equidepth buckets (each containing 1/kd of the records)
○ For dimension i, if xi and yi are in the same bucket, they are in proximity on i
○ S(X, Y, kd) is the set of dimensions on which X and Y are in proximity
○ Formula is used which emphasizes these dimensions in computing distance



Should distances depend 
on the underlying data 
distribution of all data 
points?



YES



Impact on Data 
Distribution

● Lp-norm only depends on the two points being 
compared; it completely ignores the global 
statistics of all the other data points

● Distances should depend on the underlying 
distribution of all data points

● Mahalanobis distance does this by including the 
covariance matrix of the data set

● Can think of as Euclidean distance that takes 
principal components into account



Which two points are the closest 
together?



Euclidean: A and B
Geodesic: B and C



Nonlinear Distributions: Isomap

● Geodesic distances measure the shortest path length using point-to-point distance from each point to 
one of their k-nearest neighbors

● Point-to-point distance can be a standard metric like Euclidean distance.

● Assumption: nonlinear distributions are locally Euclidean, but not globally Euclidean.

● Isomap is a method for nonlinear dimensionality-reduction and embedding:
○ Step 1: Construct graph with edges connecting k-nearest neighbors weighted by distances
○ Step 2: For any pair of points, X and Y, distance is measured from the shortest path between the corresponding 

nodes in the graph

● Multidimensional scaling (MDS) can then be used to embed data in lower-dimensional space



Example of nonlinear distribution being “flattened” via Isomap into lower-dimensional space.



Impact of Local 
Data Distribution

● Distribution of data may vary locally

● Two types of variation:
○ Local density variation
○ Local orientation variation (cluster shape)

● Methods that adjust for local variations often 
perform better.

● Local Outlier Factors (LOF) is an example of 
such a method.

● Two approaches
○ Shared nearest neighbor similarity
○ Generic methods



Shared Nearest Neighbor Similarity

● k-nearest neighbors of each data point are 
computed.

● Similarity is equal to the number of common 
neighbors between two data points.

● Locally sensitive → does not care about 
absolute values of distance, simply shared 
neighbors.

● The more shared neighbors, the more similar 
the points are.

● C and D are less similar than A and B, despite 
having equivalent Euclidean distances.



Generic Methods

● Divide space into local regions

● Use the local statistics of each region to 
adjust distances.

● Have to determine the most relevant region to 
use for a given pair of points

● Extra steps needed if comparing points from 
different regions

● However, dividing the space into regions 
requires the use of a meaningful distance 
metric for clustering. Requires iterative 
solutions.



II. Multidimensional Data 
B. Categorical Data



Categorical Data

● Since categorical data is not ordered, can’t use the previous distance measures.

● Simplest categorical similarity is to count the number of elements in X and Y that are equal; the 
“overlap” measure.

● Overlap measure does not account for relative frequencies among different attributes.
○ Example: attribute can be ‘Normal’ or ‘Diabetic’; 99% of the records have ‘Normal’ for this attribute.
○ If two records both have ‘Normal’, no significant information about the similarity between them
○ If two records both have ‘Diabetic’, then much better evidence for similarity

● Thus, need to account for pk(x) → the fraction of records in which the kth attribute is x.
○ Inverse occurrence frequency
○ Goodall measure



Using Aggregate Statistical Properties

● Instead of summing 1s and 0s (overlap method), need to incorporate pk(x): the fraction of records in 
which the kth attribute is x.

● Inverse occurrence frequency

● Goodall measure



Mixed Quantitative and Categorical Data

● Need to weight the importance of the quantitative data relative to the categorical data with parameter λ.

● Let record X = (Xn, Xc)
○ Xn is the subset of attributes that are numerical
○ Xc is the subset of attributes that are categorical

● Need two similarity measures
○ NumSim(X, Y) for numerical similarity
○ CatSim(X, Y) for categorical similarity

● Then add them together, weighted by λ:



III. Text Similarity Measures



Text Data

● Text can be treated as quantitative data if using bag-of-words representations.

● Documents will be sparse; lots of 0s.

● All elements will be nonnegative.

● Lp-norm will not work well: measures size of documents more than similarity.

● Cosine measure does better because it is insensitive to length of the documents.



Using Aggregate Statistical Properties for Text

● If two documents match on an uncommon word, more likely to be similar.

● Can normalize raw word frequencies with inverse document frequency where ni is the # of documents with 
the ith word and n is the total # of documents.

● Can also use a damping function, f(xi), to make sure the excessive presence of a word does not throw off 
the measure
○ f(xi) = √xi
○ f(xi) = log(xi)

● The normalized frequency, h(xi) and h(yi) can now be used to improve the cosine measure.



IV. Temporal Similarity Measures



Temporal Data

● Temporal data contains
○ Single contextual attribute representing time
○ One or more behavioral attributes measuring properties than change over time

● Time can be discrete or continuous

● Common distortion factors in time series data that metrics like Euclidean cannot account for:
○ Behavioral attribute scaling and translation
○ Temporal (contextual) attribute translation
○ Temporal (contextual) attribute scaling
○ Non-contiguity in matching 



Methods for 
Dealing with 
Distortion Factors 
in Time Series 

● Center behavioral attribute on the mean.

● Scale the standard deviation of the behavioral 
attribute to 1 unit.

● Time warping: stretch or compress the time 
series

● Dynamic time warping (DTW): time warping at 
specific intervals in the time series

● Time series of unequal length can be compared 
by using DTW to force them to the same length

● Window-based methods: divide each time series 
into segments and measure the similarity 
between segments of the two time series



V. Graph Similarity Measures



Similarity Between Two Nodes in One Graph

● Structural distance-based measure: shortest 
path between two nodes (Dijkstra’s 
algorithm).

● Random walk-based measure: measures the 
multiplicity of paths between two nodes 
(homophily).

● A and C are closest if using shortest path.

● A and B are closest if using random walk.



Similarity Between Two Graphs

● Can be extremely challenging. Graph isomorphism problem is NP-hard.

● Maximum common subgraph distance: If two graphs contain a large, identical subgraph in common, likely to 
be similar.

● Substructure-based similarity: Count frequently occurring substructures.

● Graph-edit distance: Number of operations needed to transform one graph into the other.

● Graph kernels: see chapter 17.



VI. Supervised Similarity Functions



Supervised Similarity Functions

● Can incorporate feedback if one knows which pairs of objects are similar and dissimilar.

● Can use a learning algorithm to learn optimal weights for weighted Lp-norm, where Θ is the set of weights 
that will be learned.

● Distance function: f(Oi, Oj, Θ)

● Goal is to learn Θ so that the following is met:



VII. Summary



Summary

● Distance and similarity measures have assumptions that are built into them and mean different things. If 
you don’t know what these assumptions are and what they mean, you probably don’t know what you are 
actually measuring.

● Distance measures are sensitive to 
○ The type of data
○ The dimensionality of data
○ The global and local nature of data distribution

● Distance and similarity measures should be selected with care.



Thanks!


